

Molecular imaging and brain connectomics: time for a molecular imaging perspective?

Arianna Sala

Coma Science Group, GIGA Consciousness, University of Liège Centre du Cerveau2, University Hospital of Liège

arianna.sala@uliege.be

Premise

OPINION | VOLUME 27, ISSUE 4, P353-366, APRIL 2023

🛨 Download Full Issue

Brain connectomics: time for a molecular imaging perspective?

Arianna Sala • Aldana Lizarraga • Silvia Paola Caminiti • Vince D. Calhoun • Simon B. Eickhoff • Christian Habeck • Sharna D. Jamadar • Daniela Perani • Joana B. Pereira • Mattia Veronese • Igor Yakushev A @ 🖂 • Show less • Show footnotes

Published: January 06, 2023 • DOI: https://doi.org/10.1016/j.tics.2022.11.015 •

Check for updates

Connectivity

Molecular Connectivity

PET in current brain connectivity

PET in the history of brain connectivity

Outline

Neuronal substrates direct

Neuronal substrates direct Reproducibility

high

Intra-class correlation coefficient: 0.90 (Maquet et al., 1990)

Neuronal substratesdirectReproducibilityhigh

Spatial resolution 4.3 mm

MCOS | 19th January 2024

Courtesy of Igor Yakushev, MAD, PhD

Neuronal substratesdirectReproducibilityhigh

Spatial resolution4.3 mmTemporal resolutionseconds to minutes

Why: accurate models of brain function

Why: accurate models of brain function

Outline

Types of PET connectivity: neural activity

■ functional connectivity (NIRS)

Types of PET connectivity: neural activity - basics

Journal of Cerebral Blood Flow and Metabolism 13:5-14 © 1993 The International Society of Cerebral Blood Flow and Metabolism Published by Raven Press, Ltd., New York

Functional Connectivity: The Principal-Component Analysis of Large (PET) Data Sets

K. J. Friston, C. D. Frith, P. F. Liddle, and R. S. J. Frackowiak

however, can be linked at two levels: (i) A unifying concept is provided by coherence $[\sigma(w)]$. Coherence is a measure of the correlation at a particular frequency (w) (Cox and Miller, 1980). Consequently, coherence and functional connectivity at a frequency w [fc(w)] are directly related:

$$fc_{ij}(w) = \sigma_{ij}(w) = |g_{ij}(w)|^2/g_{ii}(w) \cdot g_{jj}(w)$$

where $g_{ij}(w)$ is the cross-spectral density and $g_{ii}(w)$ and $g_{jj}(w)$ are the autospectral densities of the neurophysiological processes in question. Equation (4)

PET connectivity ≈ functional connectivity

MCOS | 19th January 2024

■ functional connectivity (NIRS)

Types of PET connectivity: neurotransmission - basics

Courtesy of Andreas Hahn More on humanbrainmapping.org - OHBM 2021 Meeting MCOS | 19th January 2024 Symposium: PET Imaging of Brain Connectivity: Hype or Future? Hahn et al 2014, Hum Brain Mapp

lig 💕

■ functional connectivity (NIRS)

Types of PET connectivity: proteinopathies - basics

Synaptic-Modulation of Tau Pathology Propagation

Calafate et al 2015, Cell Reports

Functional connectivity associated with tau covariance

Franzmeier et al., 2019 Brain

Outline

Summary: Methods

Method	Starting point	Endpoint	Unit	User Intervention
Seed-based inter- regional correlation	ROI (Seed)	Connectivity map of the seed	ROI -> voxel	Seed (atlas, granularity), Metrics
Independent Component Analysis	Whole-brain	Components (Resting-State Networks)	voxel -> voxel	Algorithm, Number & Selection of Components
Principal Component Analysis	Whole-brain	Components (Patterns)	voxel -> voxel	Algorithm, Number & Selection of Components
ROI-to-ROI Correlation	ROIs (Circuit to whole-brain)	Graph / Connectome	ROI -> ROI	ROIs (coverage, atlas, granularity), Metrics

Approaches: intra-subject

Approaches: inter-subject

Approaches: equivalent?

Approaches: equivalent?

Metabolic and Hemodynamic Resting-State Connectivity of the Human Brain: A High-Temporal Resolution Simultaneous BOLDfMRI and FDG-fPET Multimodality Study

Sharna D Jamadar 🕿 , Phillip G D Ward, Emma X Liang, Edwina R Orchard, Zhaolin Chen, Gary F Egan

Cerebral Cortex, Volume 31, Issue 6, June 2021, Pages 2855–2867, https://doi.org/10.1093/cercor/bhaa393

Static versus Functional PET: Making Sense of Metabolic Connectivity

Arianna Sala 🕿, Aldana Lizarraga, Isabelle Ripp, Paul Cumming, Igor Yakushev

Cerebral Cortex, bhab271, https://doi.org/10.1093/cercor/bhab271

Resting-State FDG-PET Connectivity: Covariance, Ergodicity, and Biomarkers. Response to Commentary by Sala et al.; Static versus Functional PET: Making Sense of Metabolic Connectivity

Sharna D Jamadar 🗟 , Gary F Egan

MCOS | 19th January 2024

Approaches: equivalent?

ADNI dataset

FDG-PET: n= 72 healthy controls (5-9 scans available)

Courtesy of Xin Di, PhD

Validation

Robust, precise

and reproducible

Systematic review & gap

Design of validation studies

-2

0.9

0.8

07 0.6 Density

0.3

6.2

0.1

35

Veronese et al., 2019, Sci Rep

Mattia Veronese

Matches gold-standard

Lizarraga et al., 2023, J Cereb Blood Flow Metab

SC-GMVcov 37%

By Chance 27%

Igor Yakushev

MCOS | 19th January 2024

Cross-modal integration

Cross-modal integration

Molecular Connectivity Working Group

Igor Yakushev

Alessandra Bertoldo

Di

Silvia Paola Caminiti

Simon Eickhoff

Chris Habeck

Sharna Jamadar

Joana

Vesna Sossi

Arianna Sala

Vince Calhoun

Daniela Perani

Mattia Veronese

@molecularconnectivity

Molecular Connectivity Working Group Molecular Connectivity Working Group

Mary Catanese

Johny Mejia Perez

Martin Noergaard

Matej

Rullman

Tommaso Volpi

Talmasov

Gabriel Gonzalez-Escamilla

Debora Elisa Peretti

Tatiana Horwitz

Carlo Cavaliere

Chunmeng Tang

Matthieu Doyen

https://molecularconnectivity.com

