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Buddhist mantra of 
cognitive neuroscience:

“There is no I in fMRI (or 
PET)”

Thanks to stateside colleagues



Opinionated intro

- Not too long ago, a strange “culture war” was going on with multivariate analysis pitted against univariate 
analysis, at least in fMRI analytics

- Univariate proponents would claim that multivariate analysis had no false-positive controls
- Replication and permutation tests were not highly prized
- Multivariate results were seen as hard to interpret

- A Yale Biomed-Engineering professor expressed incredulity to me on hearing a talk of mine in 2008: “Multivariate 
vs. univariate dichotomy is like a war of apples against oranges” – his apt commentary

- At the same, multivariate analysis had been performed in resting FDG-PET already since 1984 (Horwitz, 
Rappoport, Moeller, Strother, McIntosh, Eidelberg and many more)

- Opinionated take: Today, multivariate analysis and highly derivative frameworks have become very 
common, sometimes apparently more for intellectual ownership than scientific illumination

è Molecular connectivity strives for informed use of connectivity approaches, following the 
tradition of the successful work in PET, while avoiding anti-Occam’s razor tendencies



Cross-sectional sample data    Y

[Y]= number of voxels    x   number of participants

                   V                     x                  N



Typical univariate analysis
[Y]= number of voxels    X   number of participants

Perform linear models to assess the influence of covariates in voxel activation

- Linear regression is run within voxel (=row wise), across participants

          Y(i)      =  X β(i)  +    ε

  i=1…V  voxel location

X = ‘Design matrix’ 
β = parametric maps, dependent on voxel 
location



Simple dimensional thoughts
[Y]= number of voxels    X   number of participants

[Y]= number of voxels    x   number of 
participants

                   V                     x                  N
Neuroimaging, like genetics, and other fields with increasing data 
richness often has (several orders) more variables than observations   

    V  > N

è Rank (Y) = N  this implies that the maximum number of independent 
sources in the data is N

è There must be correlation between the voxels by necessity, 
prediction of an outcome with F : RV è outcome  has to consider this 
redundancy



Multivariate analysis
[Y]= number of voxels    X   number of par5cipants

Mul$variate Decomposi$ons -  generic form from matrix form of OLS:

V = ‘component matrix’, columns are components

[V] = number of voxels  x number of components 

W =‘score matrix’ or  ‘mixing matrix’, columns are subject expression 
vectors

[W]= number of subjects  x number of components  

Y=V W’ + ε



Generic form of multivariate analysis

Y=V W’ + ε
Possible choices

- Principal Components Analysis (PCA): 
Columns of V and W are mutually orthogonal

- (Spatial) Independent Components Analysis 
(ICA): Columns of V are mutually statistically 
independent to all orders

- Non-Negative Matrix factorization (NNMF): V,W >0
- Many more: sparsity of loadings, VariMax, ProMax, 

etc.
- Make your own?

Don’t confuse mathematical convenience of decomposition 
principles (=sparsity, orthogonality, independence) with 
scientific meaning!  è Need outside validation 

[V]=voxels x 10

x

W’= 10 x N

Assume 10 components, C=10



PCA didac6cs  - Principal Component Analysis (Karl Pearson 1901)

“Eigen equation” – what is that?

COV v(i)   = Y Y’ v(i)    =   λ(i)   v(i)

YY’ V  =  V Λ

Y’  YY ‘ V = Y’ V Λ    ==>     Y’Y  W = W Λ 

Eigen vectors just get scaled when mul5plied by 
covariance matrix

W= subject eigen vectors
V = voxel eigen vectors = brain images                          Y = V sqrt(Λ) W’  (=SVD) 
Λ = diagonal Eigen value matrix                                       “singular value decomposition”

Eigen equa5on in subject x subject space

Eigen equa5on in voxel  x  voxel  space

W



PCA didactics

Y = V sqrt(Λ) W’  (=SVD)
“singular value decomposition”

Y = V(:,1) λ(1) W(:,1)’  + V(:,2) λ(2) W(:,2)’  + V(:,3) λ(3) W(:,3)’  +  …
 

Objective: truncate at the right place to capture signal, and split oU noise 
      
   Y= V(:,1:C) W(:,1:C)’   +  ε         for C components

with  Wè W sqrt(Λ):          Y= V W’ 

Decomposi$on into orthogonal components in descending variance order without  inherent 
stochas$c variability☝



Scree plot for PCA: 
compute Eigen values λ 
(=VAF) from whole PC-
spectrum

PCA (Y) è  (W,V,Λ) 

èNormalize that λs sum to 1

è The flatter the scree plot, the 
more independent sources in the 
data

è Pure voxel noise gives 
approximate 1/N line

1/800=0.0012

N=800
10,000 voxels

Simplest visual heuristic: “kink” in scree plot
Others: AIC, BIC, MDL, CP-Mallows, N-fold-CV



PCA didactics II

V =
   0.7178    0.6962
   0.6962   -0.7178

PC 1

PC 2

Toy data sets with only 2 voxels



PCA didactics III

V – REDUCED  =
     0.9257    0.3782
    -0.3782   0.9257

V –FULL =
   0.7178    0.6962
   0.6962   -0.7178

What happens with prior data 
reduction?
MLM, CCA, PLS, etc. …

Data get reduced with pre-
transformation

PC 1

PC 2



PCA didactics III

V – REDUCED  =
     0.9257    0.3782
    -0.3782   0.9257

V –FULL =
   0.7178    0.6962
   0.6962   -0.7178

What happens with prior data reduction?
MLM, CCA, PLS, etc. …

Data get reduced with pre-transformation

 Christian’s opinion: 

Don’t reduce data prior to PCA with CCA or PLS, the results 
appear less arbitrary and more rigorous, and seemingly 
forgo the need for subset selection - but you are potentially  
throwing out baby with the bath water and might lose 
important signal!

(Cf.   Simpson’s paradox)



Brief excursion to didactic 
article with 2-d example

v = pattern w = subject score vector

Y = v w ’  + ε 

Cell Biochem Biophys. 2010 Nov;58(2):53-67. doi: 10.1007/s12013-
010-9093-0.
Multivariate data analysis for neuroimaging data: overview and 
application to Alzheimer's disease.
Habeck C1, Stern Y; Alzheimer’s Disease Neuroimaging Initiative.

Gaussian pixel noise:
          ε ~ N(0,σ2)

https://www.ncbi.nlm.nih.gov/pubmed/20658269
https://www.ncbi.nlm.nih.gov/pubmed/?term=Habeck%20C%5bAuthor%5d&cauthor=true&cauthor_uid=20658269
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stern%20Y%5bAuthor%5d&cauthor=true&cauthor_uid=20658269
https://www.ncbi.nlm.nih.gov/pubmed/?term=Alzheimer%E2%80%99s%20Disease%20Neuroimaging%20Initiative%5bCorporate%20Author%5d


DiNerent noise levels 

è Multivariate analysis is more powerful
è Distributed nature of activation though 
is key



Out-of-sample validation via prospective application 

Nice feature of multivariate patterns: the pattern can be prospectively applied 
to any data set to yield a pattern score, and verify correlations between the 
pattern score and a cognitive or clinical endpoint even if the pattern was 
generated from a di4erent data set

☝

score =     DATA ‘ * pattern

[score]        =   N x 1
[DATA]        =   voxels x N
[pattern]     =   voxels x 1

èBoth pattern and DATA need to be resliced into the same voxel space, obviously



Recent “caveats” about PCA

Some caveats about PCAs have been highlighted recently and mainly address 
well-documented overreach in the interpretation

• PCA (or other multivariate decompositions like ICA, NMF, clustering) produce components 
regardless of neurobiological meaning – without outside information for validation, i.e., 
association with a meaningful endpoint, the evidence is much weaker

• Picking single principal components, particularly with small variance contribution, is 
problematic because of sampling variability and noise



50 temporal null 
signals without 
correlation

50 null signals 
after smoothing 
with a 1000-step 
moving window 
average

“One man's trash is 
another man's treasure”
- PCA works on every 
kind of signal



Computing time-domain covariance matrix



Eigen vectors show 
harmonics, despite any 
meaningful correlation 
structure in null signals

Picking one isolated 
component would yield 
meaningless sinusoidal 
signal

è Simple safeguard: replication out of sample, including components loadings AND 
prediction of an endpoint!



Real-world example in a Fluid 
Reasoning task (“Paper Folding”) in 
324 people aged 20-80

- Ac$va$on maps from event-related designs
- Recogni$on accuracy is the behavioral 
variable

è Perform PCA and check first 20 PC-scores 
and their correla$on with recogni$on 



Spatial correlation 
between two PC-sets 
samples

CorrelaHon with  
behavior in both training 
and test samples 

Divide randomly into non-overlapping training and test  of 150/150
Test behavioral correla5on of subject scores in both samples, subject scores are obtained from PCs from training sample

0.46



Mul6variate Analysis Framework

• Step 1:      PCA on fMRI data

Y = V W’

Y= fMRI Data, V = PC components, W= scores

• Step 2:    Brain-behavior modeling 
Cognition = [W(:,1:K)   1] * β + ε

K = number of included PCs determined with AIC or LOOCV

• Step 3: Construction of corresponding brain pattern
pattern = V(1:k) * β(1:K)

• Step 4: Application of brain behavioral model to held-out data Z and 
compute R2

R( Z’ pattern, cognition in Z)

Mul5variate Analysis framework

doi: 10.1038/jcbfm.1987.118.
Scaled subprofile model: a 
statistical approach to the 
analysis of functional 
patterns in positron emission 
tomographic data
J R Moeller 1, S C Strother, J J Sid0s, D A 
Ro4enberg

https://pubmed.ncbi.nlm.nih.gov/?term=Moeller+JR&cauthor_id=3498733
https://pubmed.ncbi.nlm.nih.gov/3498733/
https://pubmed.ncbi.nlm.nih.gov/?term=Strother+SC&cauthor_id=3498733
https://pubmed.ncbi.nlm.nih.gov/?term=Sidtis+JJ&cauthor_id=3498733
https://pubmed.ncbi.nlm.nih.gov/?term=Rottenberg+DA&cauthor_id=3498733


SSM objectives and outcomes

Y = score *pa,ern’  + ε

Topographic robustness assessed with bootstrap



Replication of performance correlation in test sample: P(PC1-5) = 0.93,  P(PC5) = 0.46 

71%

93%

Use set PC1-
5 instead of 
just PC 5



Data

• We use 3 fluid-reasoning tasks which have been acquired in 290 people in the context of the Reference 
ability neural network study, age 20-80

• The tasks are fMRI recognition versions of: 
• (1) Matrix Reasoning (= a visuo-spatial completion task like Raven’s Advanced Matrices), 
• (2) Letter Sets (= 5 groups of letter sets with identification of one set being the odd one and violating an implicit 

to-be-discerned rule), 
• (3) Paper Folding (= depiction of a paper-folding process with subsequent punching by a stapler and a selection 

of possible punch-patterns from which the participant chooses)

• The cognitive outcome is the fraction of correct responses

fMRI Data Sample



Univariate Analysis Framework

• Step 1: Univariate regression

       y ~   Y(:,k) +  1
 k = voxel index

• Step 2: assembly of brain maps β1(k) and β0(k) 

• Step 3: out-of-sample prediction of cognitive end point for each voxel
 y(:,k)=Y(:,k) β1(k) +  β0(k) 

• Step 4: form a “vote” that weights and averages the voxel prediction in held-out data according to whole-
model significance  F in training sample

• Step 5: Application of brain behavioral model to held-out data Z and compute R2

                 R ( vote, cognition in Z)

Univariate Analysis framework



Check in 
comparison to 
univariate 
approach in real-
world fMRI data

Training      N=600
Test             N=100

290 subjects in 3 Fluid Reasoning tasks (=870 
observa5ons)

Endpoint: accuracy on recogni5on task

Compare SSM and univariate approach, with 
pooling of predic5ons weighted according to 
significance in training sample

1,000 split samples



Avoid rank deficiency 
and pick 500 randomly 
sampled voxels and 
repeat

1,000 split samples

è PCA loses informaEon, but sEll beats univariate predicEon

Training      N=600
Test             N=100

290 subjects in 3 Fluid Reasoning tasks (=870 
observations)

Endpoint: accuracy on recognition task

Compare SSM and univariate approach, with 
pooling of predictions weighted according to 
significance in training sample



Avoid rank deficiency 
and pick 50 randomly 
sampled voxels and 
repeat

1,000 split samples

è PCA loses informaEon and approaches univariate performance

Training      N=600
Test             N=100

290 subjects in 3 Fluid Reasoning tasks (=870 
observa5ons)

Endpoint: accuracy on recogni5on task

Compare SSM and univariate approach, with 
pooling of predic5ons weighted according to 
significance in training sample



Broad takeaway points

- PCA-regression (=SSM) technique achieves better held-out data replication for a 
Fluid reasoning  fMRI task 

- This generalizes to other tasks as well (although I did not show the data)

- Reducing the rank deficiency degrades the multivariate predictive utility, whereas 
the univariate prediction does not suUer; however, multivariate analysis still 
performs better

- Sampling variability dictates to pick a set of principal components, rather than 
picking isolated ones

- Rank deficiency necessitates non-parametric statistics, like bootstrap

☝



How to generate inferential brain maps when there is no parametric 
theory?  (number of voxels >> number of observations)

- Point es$mate pa^ern coming from SSM technique 

  v =  SSM(Y,Cog)   - pseudo-func$on nota$on

- Perform semi-parametric bootstrap, i.e., resample with replacement ~100-1,000 $mes 
v*=SSM(Y*,Cog*) and observe variability about point es$mate and generate Z-robustness map

Z(voxel)  ~  loading(voxel) / STD of variability around loading (voxel)

|Z|>2

P=0.0083
FDR=0.05 



Conclusions

• Multivariate techniques with PCA-regression (=SSM) mark the most basic 
complication of traditional univariate analysis

• As a “shallow” and one-shot technique, PCA-regression offers relatively easy 
inferential statistics with non-parametric resampling tests, and topographic 
information is easily rendered

• Attractiveness for medium sample sizes that do not yet permit deep-learning and CNNs
• Ensemble methods like bootstrap aggregating (BAGGING) or boosting can be additionally applied for 

better predictive utility to better accommodate low signal-to-noise ratios

• Good reference benchmark to evaluate Deep-Learning networks in terms of 
predictive utility gain



Implica6ons for molecular connec6vity?

• MC potentially oUers betters ground-truth knowledge about regions via specific tracers and oUers 
better variance concentration than fMRI

• For  region-specific ground-truth of specific nuclei (Raphe, Nuclear Accumbens, Locus 
Coeruleus), seed locations could be used as “endpoints” for the derivation of patterns with the 
SSM (PCA-regression) technique, and further tested with mediation analysis for the relation to 
symptom scales/cognition

Functional notation: (pattern, pattern score) =  SSM(Y, y-seed)
y-seed è pattern score è symptom scales/cognition

Courtesy of Igor Yakushev

Yakushev, Drzezga, Habeck, 2018
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